Wednesday, February 9, 2011

More on sonoluminescence

Sonoluminescence can occur when a sound wave of sufficient intensity induces a gaseous cavity within a liquid to collapse quickly. This cavity may take the form of a pre-existing bubble, or may be generated through a process known as cavitation. Sonoluminescence in the laboratory can be made to be stable, so that a single bubble will expand and collapse over and over again in a periodic fashion, emitting a burst of light each time it collapses. For this to occur, a standing acoustic wave is set up within a liquid, and the bubble will sit at a pressure anti-node of the standing wave. The frequencies of resonance depend on the shape and size of the container in which the bubble is contained.

Some facts about sonoluminescence:

* The light flashes from the bubbles are extremely short—between 35 and a few hundred picoseconds long—with peak intensities of the order of 1–10 mW.
* The bubbles are very small when they emit the light—about 1 micrometre in diameter—depending on the ambient fluid (e.g., water) and the gas content of the bubble (e.g., atmospheric air).
* Single-bubble sonoluminescence pulses can have very stable periods and positions. In fact, the frequency of light flashes can be more stable than the rated frequency stability of the oscillator making the sound waves driving them. However, the stability analyses of the bubble show that the bubble itself undergoes significant geometric instabilities, due to, for example, the Bjerknes forces and Rayleigh–Taylor instabilities.
* The addition of a small amount of noble gas (such as helium, argon, or xenon) to the gas in the bubble increases the intensity of the emitted light.

Spectral measurements have given bubble temperatures in the range from 2300 K to 5100 K, the exact temperatures depending on experimental conditions including the composition of the liquid and gas.[1] Detection of very high bubble temperatures by spectral methods is limited due to the opacity of liquids to short wavelength light characteristic of very high temperatures.

Writing in Nature, chemists David J. Flannigan and Kenneth S. Suslick describe a method of determining temperatures based on the formation of plasmas. Using argon bubbles in sulfuric acid, their data show the presence of ionized molecular oxygen O2+, sulfur monoxide, and atomic argon populating high-energy excited states, which confirms a hypothesis that the bubbles have a hot plasma core.[2] The ionization and excitation energy of dioxygenyl cations, which they observed, is 18 electronvolts. From this they conclude the core temperatures reaches at least 20,000 kelvins.[3]

http://en.wikipedia.org/wiki/Sonoluminescence

No comments:

Post a Comment